本文共 988 字,大约阅读时间需要 3 分钟。
EM算法是一种解决含有无法观测隐含变量的参数估计问题的方法,常用于概率模型中。其核心思想是通过迭代过程,在最大化目标函数的前提下,逐步逼近最优解。具体而言,EM算法采用两阶段循环:在E阶段(Expectation阶段),固定一个变量,将目标函数转化为凸优化函数,求其最大值;在M阶段(Maximization阶段),利用E阶段求得的最优参数更新被固定的变量,进入下一个循环。该过程直到收敛或满足停止条件为止。
在实际应用中,EM算法的核心优势在于其灵活性和适用性。然而,值得注意的是,EM算法仅能保证收敛到局部最优解,可能存在多个最优解的情况。
k-means是一种经典的无监督学习算法,用于聚类任务。其基本思路是将数据划分为K个簇,使得每个簇内的数据点与簇中心的距离之和最小。k-means算法的执行过程同样分为E和M两个阶段:
k-means算法需要预先指定簇的数量K,这一点成为其主要的局限性之一。
高斯混合模型是一种基于概率模型的聚类方法,其核心思想是将数据看作多个高斯分布的混合物。具体而言,GMM假设数据由K个高斯分布混合而成,每个高斯分布对应一个簇。每个高斯分布有三个主要参数:均值μ_i、方差Σ_i和权重π_i。数据生成过程可以表示为:每个样本点独立地从各个高斯分布中按权重π_i生成。
GMM算法同样需要预先设定簇的数量K,但其在参数估计方面具有EM算法的优势。具体来说,GMM的E和M阶段分别为:
GMM算法的一个显著优势是可以为每个样本提供归属某类的概率,这对于后续的分类任务具有重要意义。
k-means和GMM算法在EM算法框架下都采用了两阶段迭代方法。两者的主要区别体现在具体的聚类逻辑上:k-means关注的是簇中心的位置,而GMM不仅关注簇中心,还关注每个样本所属各簇的概率。
转载地址:http://wydi.baihongyu.com/